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Abstract. In his lost notebook, Ramanujan stated without proofs several beautiful identities for the three classical
Eisenstein series (in Ramanujan’s notation)P(q), Q(q), and R(q). The identities are given in terms of certain
quotients of Dedekind eta-functions calledHauptmoduls. These identities were first proved by S. Raghavan and
S.S. Rangachari, but their proofs used the theory of modular forms, with which Ramanujan was likely unfamiliar.
In this paper we prove all these identities by using classical methods which would have been well known to
Ramanujan. In fact, all our proofs use only results from Ramanujan’s notebooks.
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1. Introduction

The Eisenstein series in the title,P(q), Q(q), andR(q), are defined by

P(q) := 1− 24
∞∑

k=1

kqk

1− qk
, (1.1)

Q(q) := 1+ 240
∞∑

k=1

k3qk

1− qk
, (1.2)

and

R(q) := 1− 504
∞∑

k=1

k5qk

1− qk
, (1.3)
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where|q| < 1. (The notation above is that used in Ramanujan’s paper [4], [6, pp. 136–162]
and in his lost notebook [7]. In his notebooks [5], Ramanujan replacedP, Q, and R by
L ,M,andN, respectively.) On pages 44, 50, 51, and 53 in his lost notebook [7], Ramanujan
offers 12 formulas for Eisenstein series. All are connected with modular equations of either
degree 5 or 7.

In a wonderful paper [3] devoted to proving identities for Eisenstein series and incomplete
elliptic integrals in Ramanujan’s lost notebook, S. Raghavan and S. S. Rangachari employ
the theory of modular forms in establishing proofs for all of Ramanujan’s identities for
Eisenstein series. Most of the identities give representations for certain Eisenstein series in
terms of quotients of Dedekind eta-functions, or, more precisely, Hauptmoduls. The very
short proofs by Raghavan and Rangachari depend upon the finite dimensions of the spaces
of the relevant modular forms, and therefore upon showing that a sufficient number of
coefficients in the expansions aboutq= 0 of both sides of the proposed identities agree.
Ramanujan evidently was unfamiliar with the theory of modular forms and most likely did
not discover the identities by comparing coefficients.

The purpose of this paper is therefore to construct proofs in the spirit of Ramanujan’s
work. In fact, our proofs depend only upon theorems found in Ramanujan’s notebooks [5].
Admittedly, some of our algebraic manipulations are rather laborious, and we resorted at
times toMathematica. It is therefore clear to us that Ramanujan’s calculations, at least
in some cases, were more elegant than ours. We actually have devised two approaches.
In Sections 3 and 4, we use the two methods, respectively, to prove Ramanujan’s quintic
identities. At the end of Section 3, we prove a first order nonlinear “quintic” differential
equation of Ramanujan satisfied byP(q). In Section 5, we use the second approach, which
is more constructive, to prove Ramanujan’s septic identities. The new parametrizations for
moduli of degree 7 in Section 5 appear to more useful than those given in [1, pp. 316–324].
A subset of the authors plans to utilize these parametrizations in future work. Section 7 is
devoted to proving two new first order nonlinear “septic” differential equations forP(q).

Page numbers placed after theorem numbers refer to their locations in the lost note-
book [7].

2. Preliminary results

As usual, set

(a;q)∞ :=
∞∏

n=0

(1− aqn), |q| < 1.

Define, after Ramanujan,

f (−q) := (q;q)∞ =: e−2π i z/24η(z), q = e2π i z, Im z> 0, (2.1)

whereη denotes the Dedekind eta-function. We shall use the well-known transformation
formula [1, p. 43, Entry 27(iii)]

η(−1/z) =
√

z/ i η(z). (2.2)
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If q= e2π i z, Im z > 0, Q(q) and R(q) obey the well-known transformation formulas
[8, p. 136]

Q(e−2π i /z) = z4Q(e2π i z) (2.3)

and

R(e−2π i /z) = z6R(e2π i z). (2.4)

Our proofs below depend upon modular equations. As usual, set

(a)k := 0(a+ k)

0(a)

and

2F1(a, b; c; x) :=
∞∑

k=0

(a)k(b)k
(c)kk!

xk, |x| < 1.

Suppose that, for some positive integern,

2F1
(

1
2,

1
2; 1; 1− β

)
2F1

(
1
2,

1
2; 1;β

) = n
2F1

(
1
2,

1
2; 1; 1− α

)
2F1

(
1
2,

1
2; 1;α

) . (2.5)

A modular equation of degreen is an equation involvingα andβ that is induced by (2.5).
We often say thatβ has degree n overα. Also set

z1 := 2F1
(

1
2,

1
2; 1;α

)
and zn := 2F1

(
1
2,

1
2; 1;β

)
. (2.6)

Themultiplier m is defined by

m := z1

zn
. (2.7)

When

q = exp

(
−π 2F1

(
1
2,

1
2; 1; 1− x

)
2F1

(
1
2,

1
2; 1; x

) )

andz= 2F1(
1
2,

1
2; 1; x), we have the “evaluations”

f (−q2) = √z 2−1/3 (x(1− x)/q)1/12 , (2.8)

Q(q2) = z4(1− x + x2), (2.9)

and

R(q2) = z6(1+ x)(1− x/2)(1− 2x). (2.10)
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These are, respectively, Entries 12(iii), 13(i), and 13(ii) in Chapter 17 of Ramanujan’s
second notebook [1, pp. 124, 126].

Next, we record some relations from the theory of modular equations of degree 5. Set

m= 1+ 2p, 0< p < 2, (2.11)

and

ρ = (m3− 2m2+ 5m)1/2. (2.12)

Then [1, p. 284, Eqs. (13.4) and (13.5)](
α5

β

)1/8

= 5ρ +m2+ 5m

4m2
,

(
β5

α

)1/8

= ρ −m− 1

4
, (2.13)

(
(1− α)5

1− β
)1/8

= 5ρ −m2− 5m

4m2
, and

(
(1− β)5

1− α
)1/8

= ρ +m+ 1

4
. (2.14)

Furthermore [1, p. 288, Entry 14(ii)]

4α(1− α) = p

(
2− p

1+ 2p

)5

(2.15)

and

4β(1− β) = p5

(
2− p

1+ 2p

)
. (2.16)

Also, from Entry 14(iii) in Chapter 19 of Ramanujan’s second notebook [1, p. 289]

1− 2β = (1+ p− p2)

(
1+ p2

1+ 2p

)1/2

. (2.17)

We also need two modular equations of degree 5 from Entry 13(iv) of Chapter 18 in
Ramanujan’s second notebook [1, p. 281], namely,

m= 1+ 24/3

(
β5(1− β)5
α(1− α)

)1/24

(2.18)

and

5

m
= 1+ 24/3

(
α5(1− α)5
β(1− β)

)1/24

. (2.19)

For Section 4, we need several modular equations of degree 7 found in Entry 19(i), (ii),
(iii), and (vii) of Ramanujan’s second notebook [1, pp. 314–315]. Thus, ifβ has degree 7
overα andm is the multiplier of degree 7,
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(αβ)1/8+ {(1− α)(1− β)}1/8 = 1, (2.20)

m = −
1− 4

(
β7(1−β)7
α(1−α)

)1/24

(αβ)1/8− {(1− α)(1− β)}1/8 , (2.21)

7

m
=

1− 4
(
α7(1−α)7
β(1−β)

)1/24

(αβ)1/8− {(1− α)(1− β)}1/8 , (2.22)

(
(1− β)7

1− α
)1/8

−
(
β7

α

)1/8

= m

(
1+ (αβ)1/2+ {(1− α)(1− β)}1/2

2

)1/2

, (2.23)

(
α7

β

)1/8

−
(
(1− α)7

1− β
)1/8

= 7

m

(
1+ (αβ)1/2+ {(1− α)(1− β)}1/2

2

)1/2

, (2.24)

and

m− 7

m
= 2((αβ)1/8− {(1−α)(1−β)}1/8)(2+ (αβ)1/4+ {(1−α)(1−β)}1/4). (2.25)

3. Quintic identities (First method)

Theorem 3.1(p. 50). For Q(q) and f(−q) defined by(1.2)and(2.1), respectively,

Q(q) = f 10(−q)

f 2(−q5)
+ 250q f 4(−q) f 4(−q5)+ 3125q2 f 10(−q5)

f 2(−q)
(3.1)

and

Q(q5) = f 10(−q)

f 2(−q5)
+ 10q f 4(−q) f 4(−q5)+ 5q2 f 10(−q5)

f 2(−q)
. (3.2)

Proof: It is slightly advantageous to first prove (3.2) withq replaced byq2. To prove
(3.2), we first write the right side of (3.2) as a function ofp, wherep is defined by (2.11).

By (2.8),

q4 f 10(−q10)

f 2(−q2)
= q4 z5

52−10/3(β(1− β)/q5)5/6

z12−2/3 (α(1− α)/q)1/6

= 2−8/3 z4
5

m

(
β5(1− β)5
α(1− α)

)1/6

, (3.3)
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whereβ has degree 5 overα, z1 andz5 are defined by (2.6), andm is the multiplier defined
by (2.7). Using (2.13), (2.14), (2.12), and (2.11) in (3.3), we find that

q4 f 10(−q10)

f 2(−q2)
= 2−8/3 z4

5

m

(
ρ2− (m+ 1)2

16

)4/3

= z4
5(m− 1)4

28m
= z4

5 p4

24(1+ 2p)
. (3.4)

Similarly, from (2.8), (2.7), (2.15), (2.16), and (2.11),

f 6(−q2)

q2 f 6(−q10)
= m3

(
α(1− α)
β(1− β)

)1/2

= m3

(
2− p

p(1+ 2p)

)2

= (1+ 2p)(2− p)2

p2
. (3.5)

Thus, from (3.4) and (3.5),

q4 f 10(−q10)

f 2(−q2)

(
f 12(−q2)

q4 f 12(−q10)
+ 10

f 6(−q2)

q2 f 6(−q10)
+ 5

)
= z4

5 p4

24(1+ 2p)

(
(1+ 2p)2(2− p)4

p4
+ 10

(1+ 2p)(2− p)2

p2
+ 5

)
= z4

5

24(1+ 2p)
(16+ 32p− 8p5+ 4p6)

= z4
5

(
1+ p5(−2+ p)

4(1+ 2p)

)
= z4

5(1− β(1− β))
= Q(q10),

where in the penultimate step we used (2.16), and in the last step utilized (2.9). This
completes the proof of (3.2).

To prove (3.1), we first rewrite (3.2) in terms of the Dedekind eta-function, defined in
(2.1). Accordingly,

Q(q5) = η10(5z)

η2(z)

((
η(z)

η(5z)

)12

+ 10

(
η(z)

η(5z)

)6

+ 5

)
. (3.6)
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We now transform (3.6) by means of (2.2) and (2.3) to deduce that

(5z)−4Q
(
e−2π i /(5z)

) = η10(−1/(5z))

(5z/ i )5
(z/ i )

η2(−1/z)

×
((

η(−1/z)√
z/ i

√
5z/ i

η(−1/(5z))

)12

+ 10

(
η(−1/z)√

z/ i

√
5z/ i

η(−1/(5z))

)6

+ 5

)
,

or

Q
(
e−2π i /(5z)

) = η10(−1/(5z))

η2(−1/z)

(
55

(
η(−1/z)

η(−1/(5z))

)12

+ 250

(
η(−1/z)

η(−1/(5z))

)6

+ 1

)

= 55 η10(−1/z)

η2(−1/(5z))
+ 250η4(−1/(5z))η4(−1/z)+ η

10(−1/(5z))

η2(−1/z)
.

If we setq= e−2π i /(5z) and use (2.1), the last equality takes the shape (3.1), and so this
completes the proof of (3.1). 2

Theorem 3.2(p. 51). For f (−q) and R(q) defined by(2.1)and(1.3), respectively,

R(q) =
(

f 15(−q)

f 3(−q5)
− 500q f 9(−q) f 3(−q5)− 15625q2 f 3(−q) f 9(−q5)

)

×
√

1+ 22q
f 6(−q5)

f 6(−q)
+ 125q2 f 12(−q5)

f 12(−q)
(3.7)

and

R(q5) =
(

f 15(−q)

f 3(−q5)
+ 4q f 9(−q) f 3(−q5)− q2 f 3(−q) f 9(−q5)

)

×
√

1+ 22q
f 6(−q5)

f 6(−q)
+ 125q2 f 12(−q5)

f 12(−q)
. (3.8)

Proof: Our procedure is similar to that of the previous theorem. We establish (3.8) first,
but withq replaced byq2.

By (2.8), (2.7), (2.15), and (2.16),

f 15(−q2)

f 3(−q10)
= z15/2

1

16z3/2
5

(
α5(1− α)5
β(1− β)

)1/4

= z6
1m3/2

64

(
2− p

1+ 2p

)6

. (3.9)
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Hence, from (3.9), (3.5), (2.7), and (2.11),

F(q) := f 15(−q2)

f 3(−q10)

(
1+ 4q2 f 6(−q10)

f 6(−q2)
− q4 f 12(−q10)

f 12(−q2)

)

×
√

1+ 22q2
f 6(−q10)

f 6(−q2)
+ 125q4 f 12(−q10)

f 12(−q2)

= z6
1m3/2

64

(
2− p

1+ 2p

)6

×
(

1+ 4
p2

(1+ 2p)(2− p)2
− p4

(1+ 2p)2(2− p)4

)

×
√

1+ 22
p2

(1+ 2p)(2− p)2
+ 125

p4

(1+ 2p)2(2− p)4

= z6
5

8m3/2
(4+ 8p− 6p2− 6p3+ 9p4− 5p5+ p6)

×
√

4+ 8p+ 12p2+ 12p3+ 9p4+ 4p5+ p6

= z6
5

8m3/2
(1+ p− p2)(4+ 4p− 6p2+ 4p3− p4)

×
√
(1+ p2)(4+ 8p+ 8p2+ 4p3+ p4). (3.10)

Using (2.17) and (2.11), we can write (3.10) in the form

F(q) = z6
5(1− 2β)

4+ 4p− 6p2+ 4p3− p4

8(1+ 2p)

√
4+ 8p+ 8p2+ 4p3+ p4

= z6
5(1− 2β)

(4+ 4p− 6p2+ 4p3− p4)(2+ 2p+ p2)

8(1+ 2p)

= z6
5(1− 2β)

8+ 16p+ 2p5− p6

8(1+ 2p)

= z6
5(1− 2β)

(
1+ p5(2− p)

8(1+ 2p)

)
= z6

5(1− 2β)
(
1+ 1

2β(1− β)
)

= z6
5(1− 2β)

(
1− 1

2β
)
(1+ β)

= R(q10), (3.11)

where in the antipenultimate line we used (2.16), and in the last line we used (2.10).
Combining (3.10) and (3.11), we deduce (3.8), but withq replaced byq2.

The proof of (3.7) is almost exactly like the proof of (3.1), but, of course, we use (2.4)
instead of (2.3). 2
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The next two results are algebraic combinations of the pairs of representations in Theo-
rems 3.1 and 3.2.

Theorem 3.3(p. 51). Let A= Q(q) and B= Q(q5). Then

√
A2+ 94AB+ 625B2= 12

√
5

(
f 10(−q)

f 2(−q5)
+ 26q f 4(−q) f 4(−q5)+ 125q2 f 10(−q5)

f 2(−q)

)
.

(3.12)

Proof: Set

C = f 5(−q)

f (−q5)
, D = q f 4(−q) f 4(−q5), and E = q

f 5(−q5)

f (−q)
. (3.13)

Note that

C E = D. (3.14)

Equalities (3.1) and (3.2) now take the shapes

A = C2+ 250D + 3125E2 and B = C2+ 10D + 5E2, (3.15)

respectively, and the proposed equality (3.12) has the form√
A2+ 94AB+ 625B2 = 12

√
5(C2+ 26D + 125E2). (3.16)

Substitute (3.15) into (3.16), square both sides, use (3.14), and with just elementary algebra
(3.16) is then verified. 2

Theorem 3.4(p. 51). Let A= R(q) and B= R(q5). Then√
5(A+ 125B)2− (126)2AB

= 252

(
f 10(−q)

f 2(−q5)
+ 62q f 4(−q) f 4(−q5)+ 125q2 f 10(−q5)

f 2(−q)

)

×
√

f 10(−q)

f 2(−q5)
+ 22q f 4(−q) f 4(−q5)+ 125q2 f 10(−q5)

f 2(−q)
. (3.17)

Proof: We employ the notation (3.13). Equalities (3.7) and (3.8) then may be written as,
respectively,

A = (C3− 500C D− 56DE)
√

1+ 22E2/D + 125E4/D2 (3.18)

and

B = (C3+ 4C D− DE)
√

1+ 22E2/D + 125E4/D2, (3.19)
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and the proposed equality (3.17) has the form√
5(A+ 125B)2− (126)2AB= 252(C2+ 62D+ 125E2)

√
C2+ 22D+ 125E2. (3.20)

Square (3.20), use (3.18), (3.19), and (3.14), and simplify to verify the truth of (3.20).2

Our next goal is to establish a differential equation satisfied byP(q), defined by (1.1).
We need two lemmas.

Lemma 3.5. Recall that Q(q) and R(q) are defined by(1.2)and(1.3), respectively. Let

u := q1/4 f (−q) f (−q5) and λ := q

(
f (−q5)

f (−q)

)6

. (3.21)

Then

Q(q) = u4

(
1

λ
+ 250+ 55λ

)
(3.22)

and

R(q) = u6

(
1

λ
− 500− 56λ

)√
1

λ
+ 22+ 125λ. (3.23)

Proof: Identities (3.22) and (3.23) are obtained from (3.1) and (3.7), respectively. For
example, by (3.1) and (3.21),

Q(q) = q f 4(−q) f 4(−q5)

(
f 6(−q)

q f 6(−q5)
+ 250+ 3125q

f 6(−q5)

f 6(−q)

)

= u4

(
1

λ
+ 250+ 55λ

)
.

2

Lemma 3.6. Recall that f(−q) is defined by(2.1). Then

1 + 6
∞∑

k=1

kqk

1− qk
− 30

∞∑
k=1

kq5k

1− q5k

=
√

f 12(−q)+ 22q f 6(−q) f 6(−q5)+ 125q2 f 12(−q5)

f 2(−q) f 2(−q5)
.

Lemma 3.6 is part of Entry 4(i) in Chapter 21 of Ramanujan’s second notebook, and a
proof is given in [1, p. 463]. We give here a new short proof, based on Lemma 3.5.
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Proof: Using Ramanujan’s differential equations [4, Eq. (30)], [6, p. 142],

q
d Q

dq
= P Q− R

3
and q

d R

dq
= P R− Q2

2
, (3.24)

we deduce that

Q3− R2 = 3q R
d Q

dq
− 2q Q

d R

dq
. (3.25)

From (3.22) and (3.23), we find that

Q3− R2 = 1728
u12

λ2
, (3.26)

d Q

dq
= 4u3

(
1

λ
+ 250+ 55λ

)
du

dq
+ u4

(
− 1

λ2
+ 55

)
dλ

dq
, (3.27)

and

d R

dq
= 6u5

(
1

λ
− 500− 56λ

)√
1

λ
+ 22+ 125λ

du

dq

− 3u6(1− 152λ+ 5250λ2+ 250000λ3+ 1953125λ4)

2λ3
√

1
λ
+ 22+ 125λ

dλ

dq
. (3.28)

Using (3.22), (3.23), (3.27), and (3.28) to simplify the right hand side of (3.25), we deduce
that

Q3− R2 = 3q R
d Q

dq
− 2q Q

d R

dq
= 1728

u10

λ3
√

1
λ
+ 22+ 125λ

q
dλ

dq
.

Combining this last equation with (3.26) yields

q
dλ

dq
= u2λ

√
1

λ
+ 22+ 125λ. (3.29)

On the other hand, by straightforward logarithmic differentiation,

q
dλ

dq
= λ

(
1− 30

∞∑
k=1

kq5k

1− q5k
+ 6

∞∑
k=1

kqk

1− qk

)
. (3.30)

If we combine (3.29) and (3.30), we deduce Lemma 3.6. 2
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Theorem 3.7(p. 44). Let P(q) be defined by(1.1). Then

P(q) = f 5(−q)

f (−q5)

(√
1+ 22λ+ 125λ2− 30F(λ)

)
(3.31)

and

P(q5) = f 5(−q)

f (−q5)

(√
1+ 22λ+ 125λ2− 6F(λ)

)
, (3.32)

whereλ is defined in(3.21), and where F(λ) satisfies the nonlinear, first order differential
equation

1+ 25

2
λ+ 5

2λ
F2(λ) = F ′(λ)

√
1+ 22λ+ 125λ2. (3.33)

Proof: Assume thatF(λ) is defined by (3.31), so that (3.31) is trivially true. By (1.1) and
Lemma 3.6, we have

5P(q5)− P(q)

4
= f 5(−q)

f (−q5)

√
1+ 22λ+ 125λ2, (3.34)

with λ defined by (3.21). If we substitute (3.31) into (3.34) and solve forP(q5), we deduce
(3.32). It remains to prove thatF(λ) satisfies the differential equation (3.33).

From (3.24), (3.22), (3.23), and (3.29), we find that, with the prime′ denoting differen-
tiation with respect toq,

P(q) = 12q
u′

u
− 2

u2

√
λ

√
1+ 22λ+ 125λ2. (3.35)

Differentiating (3.35) with the help of (3.29), we deduce that

q
d P

dq
= −u4 125λ2− 1

λ
− 4

u2

√
λ

(
q

u′

u

)√
1+ 22λ+ 125λ2+ 12q

(
q

u′

u

)′
. (3.36)

Next, by using another differential equation of Ramanujan [4, Eq. (30)], [6, p. 142],

q
d P

dq
= P2− Q

12
, (3.37)

(3.22), (3.23), (3.35), and (3.36), we conclude that

12q

(
q

u′

u

)′
− 12

(
q

u′

u

)2

= −3

4

u4

λ

(
1+ 125λ2+ 18λ

)
. (3.38)
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We now identify Ramanujan’s functionF(λ). By comparing (3.31) and (3.35), we con-
clude that

F(λ) = −2

5
q

u′

u

√
λ

u2
+ 1

10

√
1+ 22λ+ 125λ2. (3.39)

Rewriting (3.39) in the form,

F(λ)√
λ
− 1

10
√
λ

√
1+ 22λ+ 125λ2 = −2

5
q

u′

u

1

u2
, (3.40)

and differentiating with respect toq, we deduce that

−1

2

u2

√
λ

√
1+ 22λ+ 125λ2

λ
F(λ)+ 1√

λ
q

d F(λ)

dq
− u2

20

125λ2− 1

λ

= −2

5

{
q

(
q

u′

u

)′ 1

u2
− 2

u2

(
q

u′

u

)2
}
. (3.41)

Using (3.38) and (3.40), we may rewrite the right hand side of (3.41) and deduce that

−1

2

u2

√
λ

√
1+ 22λ+ 125λ2

λ
F(λ)+ 1√

λ
q

d F(λ)

dq
− u2

20

125λ2− 1

λ

= u2 1+ 18λ+ 125λ2

40λ
+ 5

2
u2 F2(λ)

λ
+ u2 1+ 22λ+ 125λ2

40λ

− u2 1

2λ
F(λ)

√
1+ 22λ+ 125λ2. (3.42)

Simplifying (3.42) with the use of (3.29), we deduce Ramanujan’s differential equation
(3.33). 2

4. Quintic identities (Second method)

The alternative method to proving Theorems 3.1, 3.2, and 3.7 that we present in this section
is more constructive than that in Section 3, but, although no less elementary, is perhaps
slightly more removed from procedures that Ramanujan might have employed. On the
other hand, the method here is more amenable to proving further theorems of this sort,
especially if one does not know their formulations beforehand.

We begin by introducing some simplifying notation and making some useful preliminary
calculations. Set

p1 :=
(
β5(1− β)5
α(1− α)

)1/24

, (4.1)

p2 :=
(
α5(1− α)5
β(1− β)

)1/24

, (4.2)
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and

C :=
√

z5
5

16
√

z1
. (4.3)

Observe that, by (2.18) and (2.19), respectively,

p1 = m− 1

24/3
(4.4)

and

p2 = 5−m

24/3m
. (4.5)

It follows that

α(1− α) = p1 p5
2 =

m− 1

24/3

(
5−m

24/3m

)5

= − (m− 1)(m− 5)5

162m5
(4.6)

and

β(1− β) = p5
1 p2 =

(
m− 1

24/3

)5 5−m

24/3m
= − (m− 1)5(m− 5)

162m
. (4.7)

We also note that, by (4.3),

z4
1

162m5
= z4

1

162(z1/z5)5
= z5

5

162z1
= C2 (4.8)

and

z4
5

162m
= z4

5

162(z1/z5)
= z5

5

162z1
= C2. (4.9)

Since, by (4.3),

C3 =
√

z15
5

163
√

z3
1

= z6
5

163

1√
(z1/z3)3

= z6
5

163m
√

m
,

we find that

z6
1

163m6
= z6

1

163
(
z6

1

/
z6

5

) = z6
5

163
= C3m

√
m. (4.10)

We shall use (4.8)–(4.10) in our alternative proofs of Theorems 3.1 and 3.2.
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In view of (3.1), it is natural to introduce abbreviated notation for certain quotients of
eta-functions. Our goal is to represent these quotients as polynomials in the multiplierm.
First, by (2.8), (4.3), (4.2), and (4.5),

r1 := f 5(−q2)

f (−q10)
=

√
z5

12−5/3(α(1− α)/q)5/12

√
z52−1/3(β(1− β)/q5)1/12

=
√

z5
5z3

1

24/3√z1z3
5

(
α5(1− α)5
β(1− β)

)1/12

= 16C

24/3
m3 p2

2 =
16C

24/3
m3

(
5−m

24/3m

)2

= Cm(m− 5)2, (4.11)

and, by (2.8), (4.3), (4.1), and (4.4),

r2 := q2 f 5(−q10)

f (−q2)
= q2

√
z5

52−5/3(β(1− β)/q5)5/12

√
z12−1/3(α(1− α)/q)1/12

=
√

z5
5

24/3√z1

(
β5(1− β)5
α(1− α)

)1/12

= 16C

24/3
p2

1 =
16C

24/3

(
m− 1

24/3

)2

= C(m− 1)2. (4.12)

Hence, by (4.11) and (4.12),

r1r2 = q2 f 4(−q2) f 4(−q10) = C2m(m− 5)2(m− 1)2. (4.13)

The following lemma will be very useful.

Lemma 4.1. Let

g(m) := C2

(
6∑

k=0

ckmk

)
.

If furthermore, we set, for some numbers x1, x2, and x3,

g(m) = x1r
2
1 + x2r1r2+ x3r

2
2,

then

x1 = c6, x2 = c5+ 20c6, and x3 = c0.
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Proof: Since, by (4.11)–(4.13),

x1r
2
1 + x2r1r2+ x3r

2
2 = C2(x3+m(25x2− 4x3)+m2(625x1− 60x2+ 6x3)

+m3(−500x1+ 46x2− 4x3)+m4(150x1− 12x2+ x3)

+m5(−20x1+ x2)+m6x1),

by matching the coefficients ofmk, k = 0, . . . ,6, we find that

c0 = x3,

c1 = 25x2− 4x3,

c2 = 625x1− 60x2+ 6x3,

c3 = −500x1+ 46x2− 4x3,

c4 = 150x1− 12x2+ x3,

c5 = −20x1+ x2,

c6 = x1.

Therefore, if the system above is not overdetermined, theng(m) can be expressed as a linear
combination ofr 2

1, r1r2, andr 2
2. By solving the linear system of equations,

c0 = x3,

c5 = −20x1+ x2,

c6 = x1,

for x1, x2, and x3, and noting thatc1, c2, c3, and c4 are then uniquely determined, we
complete the proof. 2

We are now ready for our second proof of Theorem 3.1.

Proof of Theorem 3.1: By (2.9), (4.6), and (4.8),

Q(q2) = z4
1(1− α(1− α))

= z4
1

(
1+ (m− 1)(m− 5)5

162m5

)
= z4

1

162m5
(162m5+ (m− 1)(m− 5)5)

= C2(m6+ 230m5+ · · · + 55)

= r 2
1 + 2 · 53r1r2+ 55r 2

2,

upon the use of Lemma 4.1. Replacingq2 by q, we complete the proof of (3.1).
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By (2.9), (4.7), and (4.9),

Q(q10) = z4
5(1− β(1− β))

= z4
5

(
1+ (m− 1)5(m− 5)

162m

)
= z4

5

162m
(162m+ (m− 1)5(m− 5))

= C2(m6− 10m5+ · · · + 5)

= r 2
1 + 10r1r2+ 5r 2

2,

by an application of Lemma 4.1. Replacingq2 by q, we complete the proof of (3.2). 2

For the proof of Theorem 3.2, it will be convenient to define

D := m2− 2m+ 5,

E := m2+ 2m+ 5,

F := m2+ 20m− 25,

and

G := m2− 4m− 1.

Solving (4.6) and (4.7) and using the notation above, we deduce that

α = 1

2
+
√

D/mF

16m2
(4.14)

and

β = 1

2
+
√

D/mG

16
. (4.15)

(See also [1, p. 289, Eq. (14.2); p. 290, Eq. (14.4)].)
Using the notation above and Lemma 4.1, we may readily deduce the following lemma.

Lemma 4.2. For D, E, F, and G defined above, for C defined by(4.3), and for r1 and
r2, defined in(4.11)and(4.12), respectively, we have

C2DE2 = r 2
1 + 22r1r2+ 53r 2

2,

C2F(m4− 540m3+ 1350m2− 14 · 53m+ 54) = r 2
1 − 4 · 53r1r2− 56r 2

2,

and

C2G(m4− 12m3+ 54m2− 108m+ 1) = r 2
1 + 4r1r2− r 2

2 .
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Proof of Theorem 3.2: By (2.10), (4.14), (4.10), and Lemma 4.2,

R(q2) = z6
1(1+ α)(1− α/2)(1− 2α)

= z6
1

√
D/mF

163m6
(
√

D/mF− 24m2)(
√

D/mF+ 24m2)

= z6
1

163m6

√
D/mF((D/m)F2− 242m4)

= (C3m
√

m)
√

D/mF(E(m4− 540m3+ 1350m2− 14 · 53m+ 54)/m)

=
√

C2DE2(C2F(m4− 540m3+ 1350m2− 14 · 53m+ 54))

=
√

r 2
1 + 22r1r2+ 53r 2

2

(
r 2

1 − 4 · 53r1r2− 56r 2
2

)
=
√(

r 2
1 + 22r1r2+ 53r 2

2

)/
r 2

1 · r1
(
r 2

1 − 4 · 53r1r2− 56r 2
2

)
.

Replacingq2 by q, we complete the proof of (3.7).
By (2.10), (4.15), (4.10), and Lemma 4.2,

R(q10) = z6
5(1+ β)(1− β/2)(1− 2β)

= z6
5

√
D/mG

163
(
√

D/mG− 24)(
√

D/mG+ 24)

= z6
5

163

√
D/mG((D/m)G2− 242)

= (C3m
√

m)
√

D/mG(E(m4− 12m3+ 54m2− 108m+ 1)/m)

=
√

C2DE2(C2G(m4− 12m3+ 54m2− 108m+ 1))

=
√

r 2
1 + 22r1r2+ 53r 2

2

(
r 2

1 + 4r1r2− r 2
2

)
=
√(

r 2
1 + 22r1r2+ 53r 2

2

)/
r 2

1 · r1
(
r 2

1 + 4r1r2− r 2
2

)
.

Replacingq2 by q, we complete the proof of (3.8). 2

We now give an alternate proof of Theorem 3.7. Recall thatλ is defined in (3.21). For
convenience, define

H :=
√

1+ 22λ+ 53λ2 (4.16)

and

J := f 5(−q)

f (−q5)
. (4.17)
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Then Eq. (3.1) can be written in the form

Q(q) = J2(1+ 2 · 53λ+ 55λ2), (4.18)

and (3.34) takes the shape

5P(q5) = P(q)+ 4H J. (4.19)

Furthermore, (3.29) may be written as

dλ

dq
= λH J

q
. (4.20)

By logarithmic differentiation, we deduce that

1

J

d J

dq
= 5

∞∑
k=1

(−k)qk−1

1− qk
−
∞∑

k=1

(−5k)q5k−1

1− q5k

= 1

24q
(5P(q)− 5P(q5))

= 1

24q
(5P(q)− (P(q)+ 4H J))

= 1

6q
(P(q)− H J),

or

P(q) = J H + 6q

J

d J

dq
= J

(
H + 6q

J2

d J

dq

)
. (4.21)

Now define

F := − q

5J2

d J

dq
.

Then, by (4.21),

P(q) = J(H − 30F) (4.22)

and

d J

dq
= −5J2F

q
. (4.23)

Differentiating (4.16) with respect toλ, we find that

H ′(λ) = 22+ 2 · 53λ

2
√

1+ 22λ+ 53λ2
= 11+ 53λ

H
.
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Using this, (4.22), (4.23), and (4.20), we deduce that

q
d P

dq
= q

d

dq
(J(H − 30F))

= q
d J

dq
(H − 30F)+ q J

dλ

dq

d

dλ
(H − 30F)

= q

(
−5J2F

q

)
(H − 30F)+ q J

(
λH J

q

)
(H ′(λ)− 30F ′(λ))

= J2(−5F H + 150F2+ 11λ+ 53λ2− 30λF ′(λ)H). (4.24)

On the other hand, by (4.22) and (4.18),

1

12
(P2(q)− Q(q))

= 1

12
(J2(H − 30F)2− J2(1+ 2 · 53λ+ 55λ2))

= J2

12

((√
1+ 22λ+ 53λ2

)2− 60F H + 302F2− (1+ 250λ+ 55λ2)
)

= J2(−5F H + 75F2− 19λ− 2 · 53λ2
)
. (4.25)

Equating (4.24) and (4.25) by (3.37), we arrive at

F ′(λ)H = 1+ 25

2
λ+ 5

2λ
F2,

which is (3.33).
By (4.19) and (4.22), we deduce that

P(q5) = 1

5
(P(q)+ 4H J) = J

5
(H − 30F + 4H) = J(H − 6F),

which completes the proof of (3.32).

5. Septic identities

Theorem 5.1. For |q| < 1,

Q(q) =
(

f 7(−q)

f (−q7)
+ 5 · 72q f 3(−q) f 3(−q7)+ 74q2 f 7(−q7)

f (−q)

)

×
(

f 7(−q)

f (−q7)
+ 13q f 3(−q) f 3(−q7)+ 49q2 f 7(−q7)

f (−q)

)1/3

(5.1)
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and

Q(q7) =
(

f 7(−q)

f (−q7)
+ 5q f 3(−q) f 3(−q7)+ q2 f 7(−q7)

f (−q)

)

×
(

f 7(−q)

f (−q7)
+ 13q f 3(−q) f 3(−q7)+ 49q2 f 7(−q7)

f (−q)

)1/3

. (5.2)

We shall prove these identities withq replaced byq2.
For convenience, define

C :=
√

z1z7

4
,

(5.3)

p1 := 4

(
β7(1− β)7
α(1− α)

)1/24

,

and

p2 := 4

(
α7(1− α)7
β(1− β)

)1/24

.

By (2.8), (2.7), and the definitions above,

r1 := f 7(−q2)

f (−q14)
=

√
z7

12−7/3(α(1− α)/q)7/12

√
z72−1/3

(
β(1− β)/q7

)1/12

=
√

z3
1z3

7z2
1

4z2
7

(
α7(1− α)7
β(1− β)

)1/12

=
√

z3
1z3

7

4
m2

(
p2

4

)2

= C3m2 p2
2. (5.4)

Furthermore,

p1 p2 = 16(αβ(1− α)(1− β))1/4, (5.5)

r2 := q2 f 3(−q2) f 3(−q14) = C3 p1 p2, (5.6)

and

r3 := q4 f 7(−q14)

f (−q2)
= C3 p2

1

m2
. (5.7)

Thus,

r1+ 5 · 72r2+ 74r3 = C3

(
m2 p2

2 + 5 · 72 p1 p2+ 74 p2
1

m2

)
(5.8)
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and

r1+ 13r2+ 49r3 = C3

(
m2 p2

2 + 13p1 p2+ 49p2
1

m2

)
. (5.9)

Now define

T := (αβ)1/8− (1− α)1/8(1− β)1/8. (5.10)

Then, by (2.21) and (2.22),

−T = 1− p1

m
(5.11)

and

7T = (1− p2)m. (5.12)

EliminatingT in (5.11) and (5.12), we deduce that

mp2+ 7p1

m
= m+ 7

m
. (5.13)

By (2.20) and (5.10),

(αβ)1/8 = 1+ T

2
(5.14)

and

(1− α)1/8(1− β)1/8 = 1− T

2
. (5.15)

Thus, by (5.5),

p1 p2 = 16((αβ)1/8(1− α)1/8(1− β)1/8)2 = (1− T2)2. (5.16)

By (2.25), (5.10), (5.14), and (5.15), we deduce that

m− 7

m
= 2T

(
2+

(
1+ T

2

)2

+
(

1− T

2

)2
)
.

Rewriting this, we have the following lemma.

Lemma 5.2. For the multiplier m, and T defined in(5.10),

m− 7

m
= 5T + T3. (5.17)
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Applying Lemma 5.2 repeatedly, one can derive the following expressions.

Lemma 5.3.

m2 = 7+m(5T + T3),

m3 = (35T + 7T3)+m(7+ 25T2+ 10T4+ T6),

m4 = (49+ 175T2+ 70T4+ 7T6)

+m(70T + 139T3+ 75T5+ 15T7+ T9),

1

m
= −1

7
(T3+ 5T)+ 1

7
m,

1

m2
= 1

49
(7+ 25T2+ 10T4+ T6)+ 1

49
m(−5T − T3).

Lemma 5.4.

m2 p2
2 + 13p1 p2+ 49p2

1

m2
= (3+ T2)3. (5.18)

Proof: By (5.13), (5.17), and (5.16),

m2 p2
2 + 13p1 p2+ 49p2

1

m2
=
(

mp2+ 7p1

m

)2

− p1 p2

=
(

m+ 7

m

)2

− p1 p2

=
(

m− 7

m

)2

+ 28− p1 p2

= (T3+ 5T)2+ 28− (1− T2)2

= (3+ T2)3,

which completes the proof. 2

By Lemma 5.4 and (5.9), we find that

(r1+ 13r2+ 49r3)
1/3 = C

(
m2 p2

2 + 13p1 p2+ 49p2
1

m2

)1/3

= C(3+ T2). (5.19)

By (5.12),

mp2 = m− 7T. (5.20)

By Lemma 5.4, (5.20), and (5.16),

49p2
1

m2
= (3+ T2)3− (m− 7T)2− 13(1− T2)2. (5.21)
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With the help of Lemma 5.3, we can now express each ofr1, r2, andr3 in the form

f1(T)+m f2(T).

Lemma 5.5.

r1 = C3((49T2+ 7)+m(T3− 9T)),

r2 = C3((T2− 1)2),

r3 = C3

49
((7+ 4T2− 4T4+ T6)+m(9T − T3)).

Proof: Use (5.4) and (5.20) to deduce the formula forr1; use (5.6) and (5.16) to prove the
formula forr2; and use (5.7) and (5.21) for the formula forr3. 2

Lemma 5.6. For the multiplier m, and T defined in(5.10),

α = 1

16m
(1+ T)(21+ 8m− 21T + 7T2− 7T3) (5.22)

and

β = 1

16
(1+ T)(8− 3m+ 3mT−mT2+mT3). (5.23)

Proof: By (5.14) and (5.15), we deduce that(
(1− β)7

1− α
)1/8

= 1− β
(1− α)1/8(1− β)1/8 =

1− β
(1− T)/2

,(
β7

α

)1/8

= β

(αβ)1/8
= β

(1+ T)/2
,(

α7

β

)1/8

= α

(αβ)1/8
= α

(1+ T)/2
,

and (
(1− α)7

1− β
)1/8

= 1− α
(1− α)1/8(1− β)1/8 =

1− α
(1− T)/2

.

Using these identities, (5.14), and (5.15) in (2.24) and (2.23), and then solving the linear
equations forα andβ, we obtain (5.22) and (5.23). 2

Lemma 5.7. Let

g(T) := C3

(
3∑

k=0

c2kT2k +m
1∑

k=0

d2k+1T2k+1

)
.
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If

g(T) = x1r1+ x2r2+ x3r3,

for some real numbers x1, x2, and x3, then

x1 = d3+ c6, x2 = c4+ 4c6, and x3 = 49c6.

Proof: Since

(x1r1+ x2r2+ x3r3)/C
3 =

(
7x1+ x2+ 1

7
x3

)
+
(

49x1− 2x2+ 4

49
x3

)
T2

+
(

x2− 4

49
x3

)
T4+ 1

49
x3T6

+m

{(
−9x1+ 9

49
x3

)
T +

(
x1− 1

49
x3

)
T3

}
,

by Lemma 5.5, we deduce the following equalities.

c4 = x2− 4

49
x3,

c6 = 1

49
x3,

d3 = x1− 1

49
x3.

Thus, by solving the linear system above forx1, x2, andx3, we complete the proof. 2

We are now ready to prove Theorem 5.1.

Proof of (5.1): By (2.9), (5.3), (5.22), and Lemma 5.3,

Q(q2) = z4
1(1− α + α2)

=
(√

z1z7

4

)4

(44m2)(1− α + α2)

= C4(3+ T2)(147+ 64m2+ 112mT− 245T2− 112mT3

+ 49T4+ 49T6)

= C(3+ T2) · C3(147+ 64(7+m(5T + T3))+ 112mT

− 245T2− 112mT3+ 49T4+ 49T6)

= C(3+ T2) · C3(595− 245T2+ 49T4+ 49T6

+m(432T − 48T3)).

Thus, applying Lemma 5.7, we find thatx1 = 1, x2 = 5 · 72, andx3 = 74.
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Since, by Lemma 5.5,

r1+ 5 · 72r2+ 74r3 = C3(595− 245T2+ 49T4+ 49T6+m(432T − 48T3)),

we deduce that

Q(q2) = C(3+ T2) · (r1+ 5 · 72r2+ 74r3)

= (r1+ 13r2+ 49r3)
1/3(r1+ 5 · 72r2+ 74r3),

by (5.19). Thus, replacingq2 by q, we complete the proof of (5.1). 2

Proof of (5.2): By (2.9), (5.3), (5.23), and Lemma 5.3,

Q(q14) = z4
7(1− β + β2)

=
(√

z1z7

4

)4 44

m2
(1− β + β2)

= C4(3+ T2)

(
64

m2
+ 16

m
(−T + T3)+ 3− 5T2+ T4+ T6

)
= C4(3+ T2)

(
64

(
1

49
(7+ 25T2+ 10T4+ T6)

+ 1

49
m(−5T − T3)

)
+ 16

(
−1

7
(T3+ 5T)+ 1

7
m

)
(−T + T3)

+ 3− 5T2+ T4+ T6

)
= C(3+ T2) · C

3

49
(595+ 1915T2+ 241T4+ T6

+m(−432T + 48T3)).

Thus, by Lemma 5.7,x1 = 1, x2 = 5, andx3 = 1.
Since, by Lemma 5.5,

r1+ 5r2+ r3 = C3

49
(595+ 1915T2+ 241T4+ T6+m(−432T + 48T3)),

we deduce that

Q(q14) = C(3+ T2) · (r1+ 5r2+ r3)

= (r1+ 13r2+ 49r3)
1/3(r1+ 5r2+ r3),

by (5.19).
Thus, upon replacingq2 by q, we complete the proof of (5.2). 2
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Theorem 5.8. For |q| < 1,

R(q) =
(

f 7(−q)

f (−q7)
− 72(5+ 2

√
7)q f 3(−q) f 3(−q7)− 73(21+ 8

√
7)q2 f 7(−q7)

f (−q)

)
×
(

f 7(−q)

f (−q7)
− 72(5− 2

√
7)q f 3(−q) f 3(−q7)− 73(21− 8

√
7)q2 f 7(−q7)

f (−q)

)
(5.24)

and

R(q7) =
(

f 7(−q)

f (−q7)
+ (7+ 2

√
7)q f 3(−q) f 3(−q7)+ (21+ 8

√
7)q2 f 7(−q7)

f (−q)

)
×
(

f 7(−q)

f (−q7)
+ (7− 2

√
7)q f 3(−q) f 3(−q7)+ (21− 8

√
7)q2 f 7(−q7)

f (−q)

)
.

(5.25)

We shall prove the identities withq replaced byq2.
By straightforward calculations, we deduce the following lemma.

Lemma 5.9. If

C6

(
6∑

k=0

c2kT2k +m
4∑

k=0

d2k+1T2k+1

)
= (r1+ x2r2+ x3r3)(r1+ y2r2+ y3r3),

for some real numbers x2, x3, y2, and y3, then

c8 = x3+ y3+ x2y2− 6

72
(x2y3+ x3y2)+ 24

74
x3y3,

c10 = 1

72
(x2y3+ x3y2)− 8

74
x3y3,

c12 = 1

74
x3y3,

d1 = −126− 9(x2+ y2)+ 9

72
(x2y3+ x3y2)+ 18

73
x3y3.

Proof of (5.24): By (2.10), (5.3), (5.22), and Lemma 5.3,

1

C6
R(q2) = z6

1

C6
(1+ α)(1− α/2)(1− 2α)

=
(√

z1z7

4C

)6

m346(1+ α)(1− α/2)(1− 2α)

= −75411− 95130T2− 1841T4+ 3780T6− 1029T8− 2058T10

− 343T12+m(−82152T − 77344T3− 16816T5− 160T7+ 344T9).
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If we use Lemma 5.9 to find real solutions(x2, x3, y2, y3) satisfyingx2 ≤ y2, we find
that

x2 = −72(5+ 2
√

7), x3 = −73(21+ 8
√

7),

y2 = −72(5− 2
√

7), y3 = −73(21− 8
√

7).

By Lemmas 5.3 and 5.5,

1

C6
(r1− 72(5+ 2

√
7)r2− 73(21+ 8

√
7)r3)(r1− 72(5− 2

√
7)r2− 73(21− 8

√
7)r3)

= −75411− 95130T2− 1841T4+ 3780T6− 1029T8− 2058T10− 343T12

+m(−82152T − 77344T3− 16816T5− 160T7+ 344T9)

= 1

C6
R(q2).

Thus we complete the proof of (5.24) after replacingq2 by q. 2

Proof of (5.25): By (2.10), (5.3), (5.23), and Lemma 5.3,

1

C6
R(q14) = z6

7

C6
(1+ β)

(
1− β

2

)
(1− 2β)

=
(√

z1z7

4C

)6 46

m3
(1+ β)

(
1− β

2

)
(1− 2β)

= 75411+ 505890T2+ 470713T4+ 157644T6+ 18645T8+ 498T10

− T12+m(−82152T − 77344T3− 16816T5− 160T7+ 344T9).

If we use Lemma 5.9 to find real solutions(x2, x3, y2, y3) satisfyingx2 ≥ y2, we find
that

x2 = 7+ 2
√

7, x3 = 21+ 8
√

7,

y2 = 7− 2
√

7, y3 = 21− 8
√

7.

By Lemmas 5.3 and 5.5,

1

C6
(r1+ (7+ 2

√
7)r2+ (21+ 8

√
7)r3)(r1+ (7− 2

√
7)r2+ (21− 8

√
7)r3)

= 75411+ 505890T2+ 470713T4+ 157644T6+ 18645T8+ 498T10

− T12+m(−82152T − 77344T3− 16816T5− 160T7+ 344T9)

= 1

C6
R(q14).

Thus we complete the proof of (5.25) after replacingq2 by q. 2
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6. Septic differential equations

In this section, we derive two new septic differential equations forP(q), defined in (1.1).
Both involve variations of the same variable, but one is connected with the beautiful identities
in Theorem 5.1, while the other is connected with an emerging alternative septic theory of
elliptic functions, initially begun in a recent paper by Chan and Ong [2].

Theorem 6.1. For |q| < 1,

P(q) =
(

f 7(−q)

f (−q7)

)2/3

((1+ 13λ+ 49λ2)2/3− 28F(λ)) (6.1)

and

P(q7) =
(

f 7(−q)

f (−q7)

)2/3

((1+ 13λ+ 49λ2)2/3− 4F(λ)), (6.2)

where

λ = q
f 4(−q7)

f 4(−q)
,

and where F(λ) satisfies the nonlinear, first order differential equation

1+ 28

3
λ+ 7F2(λ)

3λ 3
√

1+ 13λ+ 49λ2
= F ′(λ) 3

√
1+ 13λ+ 49λ2. (6.3)

For convenience, define

H := 3
√

1+ 13λ+ 49λ2

and

J := f 7(−q)

f (−q7)
.

Then the identity (5.1) in Theorem 5.1 can be written in the abbreviated form

Q(q) = J4/3(1+ 5 · 72λ+ 74λ2)H. (6.4)

Lemma 6.2. For |q| < 1,

7P(q7) = P(q)+ 6H2J2/3.

This lemma is Entry 5(i) in Chapter 21 of Ramanujan’s second notebook [1, p. 467].
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Proof of Theorem 6.1: Since

logλ = logq + 4 log f (−q7)− 4 log f (−q)

= logq + 4
∞∑

k=1

log(1− q7k)− 4
∞∑

k=1

log(1− qk),

differentiating both sides with respect toq, we deduce that

1

λ

dλ

dq
= 1

q
+ 4

∞∑
k=1

(−7k)q7k−1

1− q7k
− 4

∞∑
k=1

(−k)qk−1

1− qk

= 1

q

(
1− 28

∞∑
k=1

kq7k

1− q7k
+ 4

∞∑
k=1

kqk

1− qk

)
= H2J2/3/q. (6.5)

Similarly, we deduce that

1

J

d J

dq
= 7

∞∑
k=1

(−k)qk−1

1− qk
−
∞∑

k=1

(−7k)q7k−1

1− q7k

= 1

24q
(7P(q)− 7P(q7))

= 1

24q
(7P(q)− (P(q)+ 6H2J2/3))

= 1

4q
(P(q)− H2J2/3).

Thus,

P(q) = J2/3H2+ 4q

J

d J

dq
= J2/3

(
H2+ 4q

J5/3

d J

dq

)
.

Now define

F := − q

7J5/3

d J

dq
.

Then

P(q) = J2/3
(
H2− 28F

)
(6.6)

and

d J

dq
= −7J5/3F

q
. (6.7)
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By the fact that

(H2)′ = 2H H ′ = 2(13+ 2 · 72λ)

3H
,

and (6.6), (6.7), and (6.5), we deduce that

q
d

dq
(P(q)) = q

d

dq
(J2/3(H2− 28F))

= q

(
2

3
J−1/3

)
d J

dq
(H2− 28F)+ q J2/3 dλ

dq

d

dλ
(H2− 28F)

= q

(
2

3
J−1/3

)(
−7J5/3F

q

)
(H2− 28F)

+q J2/3

(
λH2J2/3

q

)
((H2)′ − 28F ′)

= 2J4/3

3
(−7F H2+ 4 · 72F2+ λH(13+ 2 · 72λ− 42F ′H)). (6.8)

On the other hand, by (6.6) and (6.4),

1

12
(P2(q)− Q(q)) = 1

12
(J4/3(H2− 28F)2− J4/3(1+ 5 · 72λ+ 74λ2)H)

= J4/3

12
((1+ 13λ+ 49λ2)H − 56F H2+ 282F2

− (1+ 5 · 72λ+ 74λ2)H)

= 2J4/3

3
(−7F H2+ 2 · 72F2− λH(29+ 6 · 72λ)). (6.9)

Equating (6.8) and (6.9) and using (3.37), we obtain

F ′(λ)H = 1+ 28

3
λ+ 7

3λH
F2,

which is (6.3), and by (6.6), we complete the proof of (6.1).
By Lemma 6.2 and (6.6), we deduce that

P(q7) = 1

7
(P(q)+ 6H2J2/3) = J2/3

7
(H2− 28F + 6H2) = J2/3(H2− 4F),

which completes the proof of (6.2). 2

Theorem 6.3. Recall that P(q) is defined in(1.1). Let

z=
∞∑

m,n=−∞
qm2+mn+2n2
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and define x by

1− x

x
= 1

7q

(
f (−q)

f (−q7)

)4

. (6.10)

Then

P(q) = z2(1+ 12F1(x)) and P(q7) = z2
(
1+ 12

7 F1(x)
)
,

where F1(x) satisfies the differential equation

d F1(x)

dx
x(1− x)+ F2

1 (x)+
2

3
F1(x)

x2+ 13x

7− x + x2
+ 7

9

x(3+ x)

7− x + x2
= 0. (6.11)

Proof: Throughout the proof, the prime′ denotes differentiation with respect toq.
In [2, Eq. (2.27)] it was shown that

P(q) = z2 7− 53x − 3x2

7− x + x2
+ 12q

z′

z
. (6.12)

Using the same method that was used in [2], we can also show that

P(q7) = z2

7

3x2− 59x + 49

7− x + x2
+ 12

7
q

z′

z
. (6.13)

If we write P(q) = H + 7J andP(q7) = H + J, we find from (6.12) and (6.13) that

H = z2 and J = −4

7
z2 x2+ 13x

7− x + x2
+ 12

7
q

z′

z
.

Hence, we may let

P(q) = z2(1+ 12F1(x)) and P(q7) = z2
(
1+ 12

7 F1(x)
)
,

where

F1(x) = −1

3

x2+ 13x

7− x + x2
+ q

z2

z′

z
. (6.14)

Now,

q

(
q

z2

z′

z

)′
= q

z2

(
q

z′

z

)′
− 2

z2

(
q

z′

z

)2

= 1

z2

{
q

(
q

z′

z

)′
−
(

q
z′

z

)2

−
(

q
z′

z

)2
}
. (6.15)
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Since [2, Eq. (2.30)]

q

(
q

z′

z

)′
−
(

q
z′

z

)2

= −2z4x(1− x)
2x2− 2x − 7

(7− x + x2)2
,

and, by (6.14),

q
z′

z
= z2

3

x2+ 13x

7− x + x2
+ z2F1(x),

we may rewrite (6.15) as

q

(
F1(x)+ 1

3

x2+ 13x

7− x + x2

)′
= 1

z2

{
−2z4x(1− x)

2x2− 2x − 7

(7− x + x2)2
− z4

9

(
x2+ 13x

7− x + x2

)2

− z4F2
1 (x)−

2

3
z4F1(x)

x2+ 13x

7− x + x2

}
. (6.16)

Simplifying (6.16) with the aid of the differentiation formula [2, Thm. 2.4]

dx

dq
= z2

q
x(1− x),

we obtain Theorem 6.3. 2

The differential equation of Theorem 6.1 was discovered by Raghavan and Rangachari
[3] and can be deduced from (6.11) by setting

F1(x) = −7

3
F(λ)

(
3
√

1+ 13λ+ 49λ2
)−2

(6.17)

whereλ is given in Theorem 6.1. From (6.17),

d F1

dx
= d F1

dλ

dλ

dx

= −1

3

(
d F(λ)

dλ

1

(1+ 13λ+ 49λ2)2/3
− 2

3
F(λ)

13+ 98λ

(1+ 13λ+ 49λ2)5/3

)
dλ

dx
,

(6.18)

since

dλ

dx
= 1

7

1

(1− x)2
,

by (6.10). Substituting (6.18) and (6.17) into (6.11), we easily deduce the differential equa-
tion given in Theorem 6.1.
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